torch.fft.ifftn¶
-
torch.fft.
ifftn
(input, s=None, dim=None, norm=None, *, out=None) → Tensor¶ Computes the N dimensional inverse discrete Fourier transform of
input
.- Parameters
input (Tensor) – the input tensor
s (Tuple[int], optional) – Signal size in the transformed dimensions. If given, each dimension
dim[i]
will either be zero-padded or trimmed to the lengths[i]
before computing the IFFT. If a length-1
is specified, no padding is done in that dimension. Default:s = [input.size(d) for d in dim]
dim (Tuple[int], optional) – Dimensions to be transformed. Default: all dimensions, or the last
len(s)
dimensions ifs
is given.norm (str, optional) –
Normalization mode. For the backward transform (
ifftn()
), these correspond to:"forward"
- no normalization"backward"
- normalize by1/n
"ortho"
- normalize by1/sqrt(n)
(making the IFFT orthonormal)
Where
n = prod(s)
is the logical IFFT size. Calling the forward transform (fftn()
) with the same normalization mode will apply an overall normalization of1/n
between the two transforms. This is required to makeifftn()
the exact inverse.Default is
"backward"
(normalize by1/n
).
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example
>>> x = torch.rand(10, 10, dtype=torch.complex64) >>> ifftn = torch.fft.ifftn(x)
The discrete Fourier transform is separable, so
ifftn()
here is equivalent to two one-dimensionalifft()
calls:>>> two_iffts = torch.fft.ifft(torch.fft.ifft(x, dim=0), dim=1) >>> torch.testing.assert_close(ifftn, two_iffts, check_stride=False)