Source code for torch._tensor_str
import math
import torch
from torch._six import inf
from typing import Optional
class __PrinterOptions(object):
precision: int = 4
threshold: float = 1000
edgeitems: int = 3
linewidth: int = 80
sci_mode: Optional[bool] = None
PRINT_OPTS = __PrinterOptions()
# We could use **kwargs, but this will give better docs
[docs]def set_printoptions(
precision=None,
threshold=None,
edgeitems=None,
linewidth=None,
profile=None,
sci_mode=None
):
r"""Set options for printing. Items shamelessly taken from NumPy
Args:
precision: Number of digits of precision for floating point output
(default = 4).
threshold: Total number of array elements which trigger summarization
rather than full `repr` (default = 1000).
edgeitems: Number of array items in summary at beginning and end of
each dimension (default = 3).
linewidth: The number of characters per line for the purpose of
inserting line breaks (default = 80). Thresholded matrices will
ignore this parameter.
profile: Sane defaults for pretty printing. Can override with any of
the above options. (any one of `default`, `short`, `full`)
sci_mode: Enable (True) or disable (False) scientific notation. If
None (default) is specified, the value is defined by
`torch._tensor_str._Formatter`. This value is automatically chosen
by the framework.
Example::
>>> torch.set_printoptions(precision=2)
>>> torch.tensor([1.12345])
tensor([1.12])
>>> torch.set_printoptions(threshold=5)
>>> torch.arange(10)
tensor([0, 1, 2, ..., 7, 8, 9])
"""
if profile is not None:
if profile == "default":
PRINT_OPTS.precision = 4
PRINT_OPTS.threshold = 1000
PRINT_OPTS.edgeitems = 3
PRINT_OPTS.linewidth = 80
elif profile == "short":
PRINT_OPTS.precision = 2
PRINT_OPTS.threshold = 1000
PRINT_OPTS.edgeitems = 2
PRINT_OPTS.linewidth = 80
elif profile == "full":
PRINT_OPTS.precision = 4
PRINT_OPTS.threshold = inf
PRINT_OPTS.edgeitems = 3
PRINT_OPTS.linewidth = 80
if precision is not None:
PRINT_OPTS.precision = precision
if threshold is not None:
PRINT_OPTS.threshold = threshold
if edgeitems is not None:
PRINT_OPTS.edgeitems = edgeitems
if linewidth is not None:
PRINT_OPTS.linewidth = linewidth
PRINT_OPTS.sci_mode = sci_mode
class _Formatter(object):
def __init__(self, tensor):
self.floating_dtype = tensor.dtype.is_floating_point
self.int_mode = True
self.sci_mode = False
self.max_width = 1
with torch.no_grad():
tensor_view = tensor.reshape(-1)
if not self.floating_dtype:
for value in tensor_view:
value_str = '{}'.format(value)
self.max_width = max(self.max_width, len(value_str))
else:
nonzero_finite_vals = torch.masked_select(tensor_view, torch.isfinite(tensor_view) & tensor_view.ne(0))
if nonzero_finite_vals.numel() == 0:
# no valid number, do nothing
return
# Convert to double for easy calculation. HalfTensor overflows with 1e8, and there's no div() on CPU.
nonzero_finite_abs = nonzero_finite_vals.abs().double()
nonzero_finite_min = nonzero_finite_abs.min().double()
nonzero_finite_max = nonzero_finite_abs.max().double()
for value in nonzero_finite_vals:
if value != torch.ceil(value):
self.int_mode = False
break
if self.int_mode:
# in int_mode for floats, all numbers are integers, and we append a decimal to nonfinites
# to indicate that the tensor is of floating type. add 1 to the len to account for this.
if nonzero_finite_max / nonzero_finite_min > 1000. or nonzero_finite_max > 1.e8:
self.sci_mode = True
for value in nonzero_finite_vals:
value_str = ('{{:.{}e}}').format(PRINT_OPTS.precision).format(value)
self.max_width = max(self.max_width, len(value_str))
else:
for value in nonzero_finite_vals:
value_str = ('{:.0f}').format(value)
self.max_width = max(self.max_width, len(value_str) + 1)
else:
# Check if scientific representation should be used.
if nonzero_finite_max / nonzero_finite_min > 1000.\
or nonzero_finite_max > 1.e8\
or nonzero_finite_min < 1.e-4:
self.sci_mode = True
for value in nonzero_finite_vals:
value_str = ('{{:.{}e}}').format(PRINT_OPTS.precision).format(value)
self.max_width = max(self.max_width, len(value_str))
else:
for value in nonzero_finite_vals:
value_str = ('{{:.{}f}}').format(PRINT_OPTS.precision).format(value)
self.max_width = max(self.max_width, len(value_str))
if PRINT_OPTS.sci_mode is not None:
self.sci_mode = PRINT_OPTS.sci_mode
def width(self):
return self.max_width
def format(self, value):
if self.floating_dtype:
if self.sci_mode:
ret = ('{{:{}.{}e}}').format(self.max_width, PRINT_OPTS.precision).format(value)
elif self.int_mode:
ret = '{:.0f}'.format(value)
if not (math.isinf(value) or math.isnan(value)):
ret += '.'
else:
ret = ('{{:.{}f}}').format(PRINT_OPTS.precision).format(value)
else:
ret = '{}'.format(value)
return (self.max_width - len(ret)) * ' ' + ret
def _scalar_str(self, formatter1, formatter2=None):
if formatter2 is not None:
real_str = _scalar_str(self.real, formatter1)
imag_str = (_scalar_str(self.imag, formatter2) + "j").lstrip()
# handles negative numbers, +0.0, -0.0
if imag_str[0] == '+' or imag_str[0] == '-':
return real_str + imag_str
else:
return real_str + "+" + imag_str
else:
return formatter1.format(self.item())
def _vector_str(self, indent, summarize, formatter1, formatter2=None):
# length includes spaces and comma between elements
element_length = formatter1.width() + 2
if formatter2 is not None:
# width for imag_formatter + an extra j for complex
element_length += formatter2.width() + 1
elements_per_line = max(1, int(math.floor((PRINT_OPTS.linewidth - indent) / (element_length))))
char_per_line = element_length * elements_per_line
def _val_formatter(val, formatter1=formatter1, formatter2=formatter2):
if formatter2 is not None:
real_str = formatter1.format(val.real)
imag_str = (formatter2.format(val.imag) + "j").lstrip()
# handles negative numbers, +0.0, -0.0
if imag_str[0] == '+' or imag_str[0] == '-':
return real_str + imag_str
else:
return real_str + "+" + imag_str
else:
return formatter1.format(val)
if summarize and self.size(0) > 2 * PRINT_OPTS.edgeitems:
data = ([_val_formatter(val) for val in self[:PRINT_OPTS.edgeitems].tolist()] +
[' ...'] +
[_val_formatter(val) for val in self[-PRINT_OPTS.edgeitems:].tolist()])
else:
data = [_val_formatter(val) for val in self.tolist()]
data_lines = [data[i:i + elements_per_line] for i in range(0, len(data), elements_per_line)]
lines = [', '.join(line) for line in data_lines]
return '[' + (',' + '\n' + ' ' * (indent + 1)).join(lines) + ']'
# formatter2 is only used for printing complex tensors.
# For complex tensors, formatter1 and formatter2 are the formatters for tensor.real
# and tensor.imag respesectively
def _tensor_str_with_formatter(self, indent, summarize, formatter1, formatter2=None):
dim = self.dim()
if dim == 0:
return _scalar_str(self, formatter1, formatter2)
if dim == 1:
return _vector_str(self, indent, summarize, formatter1, formatter2)
if summarize and self.size(0) > 2 * PRINT_OPTS.edgeitems:
slices = ([_tensor_str_with_formatter(self[i], indent + 1, summarize, formatter1, formatter2)
for i in range(0, PRINT_OPTS.edgeitems)] +
['...'] +
[_tensor_str_with_formatter(self[i], indent + 1, summarize, formatter1, formatter2)
for i in range(len(self) - PRINT_OPTS.edgeitems, len(self))])
else:
slices = [_tensor_str_with_formatter(self[i], indent + 1, summarize, formatter1, formatter2)
for i in range(0, self.size(0))]
tensor_str = (',' + '\n' * (dim - 1) + ' ' * (indent + 1)).join(slices)
return '[' + tensor_str + ']'
def _tensor_str(self, indent):
if self.numel() == 0:
return '[]'
if self.has_names():
# There are two main codepaths (possibly more) that tensor printing goes through:
# - tensor data can fit comfortably on screen
# - tensor data needs to be summarized
# Some of the codepaths don't fully support named tensors, so we send in
# an unnamed tensor to the formatting code as a workaround.
self = self.rename(None)
summarize = self.numel() > PRINT_OPTS.threshold
if self._is_zerotensor():
self = self.clone()
# handle the negative bit
if self.is_neg():
self = self.resolve_neg()
if self.dtype is torch.float16 or self.dtype is torch.bfloat16:
self = self.float()
if self.dtype.is_complex:
# handle the conjugate bit
self = self.resolve_conj()
real_formatter = _Formatter(get_summarized_data(self.real) if summarize else self.real)
imag_formatter = _Formatter(get_summarized_data(self.imag) if summarize else self.imag)
return _tensor_str_with_formatter(self, indent, summarize, real_formatter, imag_formatter)
else:
formatter = _Formatter(get_summarized_data(self) if summarize else self)
return _tensor_str_with_formatter(self, indent, summarize, formatter)
def _add_suffixes(tensor_str, suffixes, indent, force_newline):
tensor_strs = [tensor_str]
last_line_len = len(tensor_str) - tensor_str.rfind('\n') + 1
for suffix in suffixes:
suffix_len = len(suffix)
if force_newline or last_line_len + suffix_len + 2 > PRINT_OPTS.linewidth:
tensor_strs.append(',\n' + ' ' * indent + suffix)
last_line_len = indent + suffix_len
force_newline = False
else:
tensor_strs.append(', ' + suffix)
last_line_len += suffix_len + 2
tensor_strs.append(')')
return ''.join(tensor_strs)
def get_summarized_data(self):
dim = self.dim()
if dim == 0:
return self
if dim == 1:
if self.size(0) > 2 * PRINT_OPTS.edgeitems:
return torch.cat((self[:PRINT_OPTS.edgeitems], self[-PRINT_OPTS.edgeitems:]))
else:
return self
if self.size(0) > 2 * PRINT_OPTS.edgeitems:
start = [self[i] for i in range(0, PRINT_OPTS.edgeitems)]
end = ([self[i]
for i in range(len(self) - PRINT_OPTS.edgeitems, len(self))])
return torch.stack([get_summarized_data(x) for x in (start + end)])
else:
return torch.stack([get_summarized_data(x) for x in self])
def _str_intern(inp):
prefix = 'tensor('
indent = len(prefix)
suffixes = []
# This is used to extract the primal value and thus disable the forward AD
# within this function.
# TODO(albanD) This needs to be updated when more than one level is supported
self, tangent = torch.autograd.forward_ad.unpack_dual(inp)
# Note [Print tensor device]:
# A general logic here is we only print device when it doesn't match
# the device specified in default tensor type.
# Currently torch.set_default_tensor_type() only supports CPU/CUDA, thus
# torch._C._get_default_device() only returns either cpu or cuda.
# In other cases, we don't have a way to set them as default yet,
# and we should always print out device for them.
if self.device.type != torch._C._get_default_device()\
or (self.device.type == 'cuda' and torch.cuda.current_device() != self.device.index):
suffixes.append('device=\'' + str(self.device) + '\'')
# Tensor printing performs tensor operations like slice, indexing, etc to make it in a
# representable format. These operations on xla/lazy tensor results in compilations. Hence,
# to avoid compilations, copying the tensor to cpu before printing.
if self.device.type == 'xla' or self.device.type == 'lazy':
self = self.to('cpu')
# TODO: add an API to map real -> complex dtypes
_default_complex_dtype = torch.cdouble if torch.get_default_dtype() == torch.double else torch.cfloat
has_default_dtype = self.dtype in (torch.get_default_dtype(), _default_complex_dtype, torch.int64, torch.bool)
if self.is_sparse:
suffixes.append('size=' + str(tuple(self.shape)))
suffixes.append('nnz=' + str(self._nnz()))
if not has_default_dtype:
suffixes.append('dtype=' + str(self.dtype))
indices_prefix = 'indices=tensor('
indices = self._indices().detach()
indices_str = _tensor_str(indices, indent + len(indices_prefix))
if indices.numel() == 0:
indices_str += ', size=' + str(tuple(indices.shape))
values_prefix = 'values=tensor('
values = self._values().detach()
values_str = _tensor_str(values, indent + len(values_prefix))
if values.numel() == 0:
values_str += ', size=' + str(tuple(values.shape))
tensor_str = indices_prefix + indices_str + '),\n' + ' ' * indent + values_prefix + values_str + ')'
elif self.is_sparse_csr:
suffixes.append('size=' + str(tuple(self.shape)))
suffixes.append('nnz=' + str(self._nnz()))
if not has_default_dtype:
suffixes.append('dtype=' + str(self.dtype))
crow_indices_prefix = 'crow_indices=tensor('
crow_indices = self.crow_indices().detach()
crow_indices_str = _tensor_str(crow_indices, indent + len(crow_indices_prefix))
if crow_indices.numel() == 0:
crow_indices_str += ', size=' + str(tuple(crow_indices.shape))
col_indices_prefix = 'col_indices=tensor('
col_indices = self.col_indices().detach()
col_indices_str = _tensor_str(col_indices, indent + len(col_indices_prefix))
if col_indices.numel() == 0:
col_indices_str += ', size=' + str(tuple(col_indices.shape))
values_prefix = 'values=tensor('
values = self.values().detach()
values_str = _tensor_str(values, indent + len(values_prefix))
if values.numel() == 0:
values_str += ', size=' + str(tuple(values.shape))
tensor_str = crow_indices_prefix + crow_indices_str + '),\n' + ' ' * indent +\
col_indices_prefix + col_indices_str + '),\n' + ' ' * indent +\
values_prefix + values_str + ')'
elif self.is_quantized:
suffixes.append('size=' + str(tuple(self.shape)))
if not has_default_dtype:
suffixes.append('dtype=' + str(self.dtype))
suffixes.append('quantization_scheme=' + str(self.qscheme()))
if self.qscheme() == torch.per_tensor_affine or self.qscheme() == torch.per_tensor_symmetric:
suffixes.append('scale=' + str(self.q_scale()))
suffixes.append('zero_point=' + str(self.q_zero_point()))
elif self.qscheme() == torch.per_channel_affine or self.qscheme() == torch.per_channel_symmetric \
or self.qscheme() == torch.per_channel_affine_float_qparams:
suffixes.append('scale=' + str(self.q_per_channel_scales()))
suffixes.append('zero_point=' + str(self.q_per_channel_zero_points()))
suffixes.append('axis=' + str(self.q_per_channel_axis()))
tensor_str = _tensor_str(self.dequantize(), indent)
else:
if self.is_meta:
suffixes.append('size=' + str(tuple(self.shape)))
if self.dtype != torch.get_default_dtype():
suffixes.append('dtype=' + str(self.dtype))
# TODO: This implies that ellipses is valid syntax for allocating
# a meta tensor, which it could be, but it isn't right now
tensor_str = '...'
else:
if self.numel() == 0 and not self.is_sparse:
# Explicitly print the shape if it is not (0,), to match NumPy behavior
if self.dim() != 1:
suffixes.append('size=' + str(tuple(self.shape)))
# In an empty tensor, there are no elements to infer if the dtype
# should be int64, so it must be shown explicitly.
if self.dtype != torch.get_default_dtype():
suffixes.append('dtype=' + str(self.dtype))
tensor_str = '[]'
else:
if not has_default_dtype:
suffixes.append('dtype=' + str(self.dtype))
if self.layout != torch.strided:
tensor_str = _tensor_str(self.to_dense(), indent)
else:
tensor_str = _tensor_str(self, indent)
if self.layout != torch.strided:
suffixes.append('layout=' + str(self.layout))
# Use inp here to get the original grad_fn and not the one generated by the forward grad
# unpacking.
if inp.grad_fn is not None:
name = type(inp.grad_fn).__name__
if name == 'CppFunction':
name = inp.grad_fn.name().rsplit('::', 1)[-1]
suffixes.append('grad_fn=<{}>'.format(name))
elif inp.requires_grad:
suffixes.append('requires_grad=True')
if self.has_names():
suffixes.append('names={}'.format(self.names))
if tangent is not None:
suffixes.append('tangent={}'.format(tangent))
return _add_suffixes(prefix + tensor_str, suffixes, indent, force_newline=self.is_sparse)
def _str(self):
with torch.no_grad():
return _str_intern(self)